Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Tetrakis(μ_{2}-1,8-naphthyridine)$1: 2 \kappa^{4} N: N^{\prime} ; 3: 4 \kappa^{4} N: N^{\prime}-$ bis $\left(\mu_{2}\right.$-salicyl-ato)-1:4 $\kappa^{2} O: O^{\prime} ; 2: 3 \kappa^{2} O: O^{\prime}$-tetrakis(salicylic acid)- $1 \kappa O, 2 \kappa O, 3 \kappa O, 4 \kappa O-$ tetrasilver(I)(4 Ag—Ag)

Yue Wang ${ }^{\text {a }}$ and Nobuo Okabe ${ }^{\text {b* }}$

${ }^{\text {a }}$ Laboratory of Inorganic Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China, and ${ }^{\text {b }}$ Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
Correspondence e-mail: okabe@phar.kindai.ac.jp

Received 11 March 2005
Accepted 4 April 2005
Online 13 May 2005
The title complex, $\left[\mathrm{Ag}_{4}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{4}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}\right)_{4}\right]$, lies about an inversion centre and has a unique tetranuclear structure consisting of four Ag^{I} atoms bridged by four N atoms from two 1,8 -naphthyridine (napy) ligands to form an $N: N^{\prime}$-bridge and four O atoms from two salicylate (SA) ligands to form an $O: O^{\prime}$-bridge. The Ag atoms have distorted octahedral coordination geometry. The centrosymmetric Ag_{4} ring has $\mathrm{Ag}-\mathrm{Ag}$ separations of 2.772 (2) and 3.127 (2) \AA, and $\mathrm{Ag}-\mathrm{Ag}-\mathrm{Ag}$ angles of 107.70 (4) and $72.30(4)^{\circ}$. All SA hydroxy groups take part in intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding. In the crystal packing, the napy rings are oriented parallel and overlap one another. These $\pi-\pi$ interactions, together with weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts, stabilize the crystal structure.

Comment

The two active N -donor atoms in 1,8-naphthyridine (napy) can act in different coordination modes, such as monodentate (Dewer et al., 1975; Enwall \& Emerson, 1979) and bidentate (Bodner \& Hendricker, 1973; Epstein et al., 1974; Munakata et al., 1990). In the case of $\operatorname{Ag}($ napy $-N)$ type complexes, napy always acts as a bridging ligand to form planar binuclear complexes (Tsuda et al., 1989; Griffith et al., 1995; Koizumi \& Tanaka, 2004). It is also known that silver complexes with salicylic acid (SA) are also based on a bis(carboxylato$\kappa^{2} O: O^{\prime}$)-bridged disilver nucleus (Movsumov et al., 1990).

In the present study, we designed a mixed-ligand silver complex using napy and SA ligands, and synthesized the unique title tetrasilver complex, (I). Complex (I) is the first example in which there are two kinds of $\mathrm{Ag}-\mathrm{Ag}$ bridges, i.e. $O: O^{\prime}$ - and $N: N^{\prime}$-bridges, co-existing in one complex molecule.

The structure of (I) is shown in Fig. 1, with principal dimensions given in Table 1. Four Ag^{I} atoms lie about an
inversion centre and, as a consequence, are perfectly planar. Atom Ag1 has a distorted octahedral coordination, being bonded to two N atoms [N 3 and $\mathrm{N} 2^{\mathrm{i}}$; symmetry code: (i) $1-x$, $1-y,-z]$ from two napy ligands, to one carboxylate O atom

(I)
(O1) from a bidentate salicylate ligand, to two adjacent Ag 2 atoms, and (weakly) to a carboxyl atom (O7) of a salicylic acid molecule. Atom Ag 2 also has a distorted octahedral coordination geometry, in which $\mathrm{Ag} 1^{\mathrm{i}}, \mathrm{N} 1, \mathrm{~N} 4^{\mathrm{i}}$ and the salicylate O 2 atoms form the equatorial plane, and Ag1 and salicylate O4 atoms complete the octahedron. As can be seen in Fig. 1, all salicylic acid hydroxy groups participate in intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Each napy molecule acts as a bidentate ligand and pairs form a rigid bis(napy- $N: N^{\prime}$)-bridged disilver unit. In this unit, the eight-membered bis-chelate ring $(-\mathrm{Ag}-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{Ag}-$ $\mathrm{N}-\mathrm{C}-\mathrm{N}-$) is almost planar but is slightly folded [6.97(10) ${ }^{\circ}$] about the $\mathrm{Ag}-\mathrm{Ag}$ axis. Two inversion-related salicylate

Figure 1
A view of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 10% probability level. All H atoms except those involved in $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds have been omitted. [Symmetry code: (i) $1-x, 1-y,-z$.]
moieties act as bidentate bridging ligands to form a tenmembered chelate ring $(-\mathrm{Ag}-\mathrm{Ag}-\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{Ag}-\mathrm{Ag}-$ $\mathrm{O}-\mathrm{C}-\mathrm{O}-$). As shown in Fig. 2, the two bridging salicylate aromatic rings are tilted away from the ten-membered chelate ring plane by $18.86(10)^{\circ}$. The eight-membered chelate rings and the ten-membered chelate rings are essentially orthogonal.

In (I), the average $\mathrm{Ag}-\mathrm{O}$ [bridged $\mathrm{O} ; 2.413$ (2) \AA] and $\mathrm{Ag}-\mathrm{N}[2.228$ (6) \AA] distances are both longer than the corresponding values in complexes with only one kind of bridge unit within an $O: O^{\prime}$ - or $N: N^{\prime}$-bridge, e.g. 2.180 (4) and 2.196 (5) \AA for the $\mathrm{Ag}-\mathrm{O}$ distance in an $O: O^{\prime}$-bridged silversalicylate complex (Movsumov et al., 1990) and 2.187 (3)2.213 (4) \AA for the $\mathrm{Ag}-\mathrm{N}$ distances in $N: N^{\prime}$-bridged napy complexes (Tsuda et al., 1989; Munakata et al., 1990; Griffith et al., 1995; Koizumi \& Tanaka, 2004). This suggests that the coordination interaction of Ag with the ligand atoms (O and N) in the mixed-bridged complex, (I), may be weakened.
There are two types of $\mathrm{Ag}-\mathrm{Ag}$ interaction in (I). One is a weaker $\mathrm{Ag} 1-\mathrm{Ag} 2$ interaction $[3.127$ (2) \AA] formed by the carboxylate- $O: O^{\prime}$ bridge. The other is a relatively stronger $\mathrm{Ag} 1-\mathrm{Ag} 2{ }^{\mathrm{i}}$ interaction $\left[2.773\right.$ (2) \AA] formed by the napy- $N: N^{\prime}$ bridge. Compared with analogous complexes, the carboxylate-

Figure 2
A view of the packing in the tetrasilver unit of (I). The weakly coordinated SA ligands have been omitted for clarity. [Symmetry code: (i) $1-x, 1-y,-z$.]
bridged value is much larger than the values in the literature, for example, 2.855 (1) \AA in disilver(I) disalicylate (Movsumov et al., 1990), 2.953 (1) \AA in catena-bis(4-aminobenzoato)disilver(I) (Kristiansson, 2001) and 2.761 (2) \AA in diaquabis(μ-4-hydroxybenzenecarboxylato)disilver(I) tetrahydrate (Wang \& Okabe, 2005). On the other hand, the napy-bridged $\mathrm{Ag}-\mathrm{Ag}$ separation is almost within the reported ranges, viz. from 2.748 (2) \AA in $\left[\mathrm{Ag}_{2}(\mu \text {-napy })_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}($ Tsuda et al., 1989) to 2.779 (1) \AA in $\left[\mathrm{Ag}_{2}(\mu \text {-napy })_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}($ Koizumi \& Tanaka, 2004) to $2.780(1) \AA$ in $\left[\mathrm{Ag}_{2}(\mu \text {-napy })_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$ (Griffith et al., 1995).

The pairs of napy rings are oriented almost parallel and overlap to form $\pi-\pi$ stacking, with centroid-centroid distances of 3.376 (4) and 3.343 (4) \AA for rings N1/C16-C18/ C22/C23 and N3/C8-C10/C14/C15, and rings N2/C19-C23 and N4/C11-C15. Intermolecular stacking between the napy rings is also present. Ring N2/C19-C23 overlaps with the inversionrelated ring at $(-x, 1-y,-z)$, with an interplanar distance of 3.368 (2) \AA and a centroid-centroid separation of $3.514 \AA$. There are also $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2) between translation-related and screw-axis-related complexes, which link them along the a and b directions

Experimental

Brown platelet-shaped crystals of (I) were obtained by slow evaporation of an 80% methanol solution of a mixture of 1,8 -naphthyridine, salicylic acid and AgNO_{3} (molar ratio 4:4:1) at room temperature.

Crystal data

$\begin{aligned} & {\left[\mathrm{Ag}_{4}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{4}-\right.} \\ & \left.\quad\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}\right)_{4}\right] \end{aligned}$	$D_{x}=1.728 \mathrm{Mg} \mathrm{~m}^{-3}$ Mo $K \alpha$ radiation
$M_{r}=1776.75$	Cell parameters from 21592
Monoclinic, $P 2_{1} / \mathrm{c}$	reflections
$a=10.205$ (12) \AA	$\theta=3.1-27.5^{\circ}$
$b=13.129$ (10) \AA	$\mu=1.21 \mathrm{~mm}^{-1}$
$c=25.82$ (2) \AA	$T=296.1 \mathrm{~K}$
$\beta=99.26$ (4) ${ }^{\circ}$	Platelet, brown
$V=3414(5) \AA^{3}$	$0.3 \times 0.3 \times 0.03 \mathrm{~mm}$
$Z=2$	

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Ag1-N3	2.227 (2)	Ag2-N4 ${ }^{\text {i }}$	2.219 (2)
$\mathrm{Ag} 1-\mathrm{N} 2{ }^{\text {i }}$	2.237 (2)	Ag2-N1	2.228 (3)
Ag1-O1	2.412 (2)	$\mathrm{Ag} 2-\mathrm{O} 2$	2.414 (3)
$\mathrm{Ag} 1-\mathrm{Ag} 2{ }^{\text {i }}$	2.772 (2)	Ag2-O4	2.498 (2)
Ag1-Ag2	3.127 (2)	$\mathrm{Ag} 2-\mathrm{Ag} 1^{\text {i }}$	2.7725 (16)
$\mathrm{N} 3-\mathrm{Ag} 1-\mathrm{N} 2{ }^{\text {i }}$	167.87 (7)	$\mathrm{N} 4^{\mathrm{i}}-\mathrm{Ag} 2-\mathrm{O} 4$	87.58 (8)
$\mathrm{N} 3-\mathrm{Ag} 1-\mathrm{O} 1$	95.04 (9)	$\mathrm{N} 1-\mathrm{Ag} 2-\mathrm{O} 4$	92.72 (8)
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{O} 1$	96.25 (9)	$\mathrm{O} 2-\mathrm{Ag} 2-\mathrm{O} 4$	78.90 (8)
$\mathrm{N} 3-\mathrm{Ag} 1-\mathrm{Ag} 2{ }^{\text {i }}$	84.47 (7)	$\mathrm{N} 4^{\mathrm{i}}-\mathrm{Ag} 2-\mathrm{Ag} 1^{\mathrm{i}}$	83.53 (7)
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Ag} 2{ }^{\mathrm{i}}$	83.66 (7)	$\mathrm{N} 1-\mathrm{Ag} 2-\mathrm{Ag} 1{ }^{\mathrm{i}}$	84.43 (7)
$\mathrm{O} 1-\mathrm{Ag} 1-\mathrm{Ag} 2{ }^{\text {i }}$	170.27 (6)	$\mathrm{O} 2-\mathrm{Ag} 2-\mathrm{Ag} 1{ }^{\mathrm{i}}$	148.42 (7)
N3-Ag1-Ag2	93.57 (8)	$\mathrm{O} 4-\mathrm{Ag} 2-\mathrm{Ag} 1^{\text {i }}$	132.63 (5)
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Ag} 2$	92.36 (8)	$\mathrm{N} 4^{\mathrm{i}}-\mathrm{Ag} 2-\mathrm{Ag} 1$	94.12 (8)
$\mathrm{O} 1-\mathrm{Ag} 1-\mathrm{Ag} 2$	82.04 (7)	$\mathrm{N} 1-\mathrm{Ag} 2-\mathrm{Ag} 1$	92.40 (8)
$\mathrm{Ag} 2{ }^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Ag} 2$	107.69 (5)	$\mathrm{O} 2-\mathrm{Ag} 2-\mathrm{Ag} 1$	76.12 (7)
N4 ${ }^{\text {i }}$ - Ag2 $2-\mathrm{N} 1$	163.87 (8)	$\mathrm{O} 4-\mathrm{Ag} 2-\mathrm{Ag} 1$	154.95 (5)
$\mathrm{N} 4{ }^{\text {i }}-\mathrm{Ag} 2-\mathrm{O} 2$	98.53 (10)	$\mathrm{Ag} 1{ }^{\mathrm{i}}-\mathrm{Ag} 2-\mathrm{Ag} 1$	72.30 (5)
$\mathrm{N} 1-\mathrm{Ag} 2-\mathrm{O} 2$	97.34 (10)		

Symmetry code: (i) $-x+1,-y+1,-z$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 31 \cdots \mathrm{O} 1$	0.82	1.81	2.531 (4)	147
O6-H61 ${ }^{\text {O }}$ O 4	0.82	1.81	2.540 (4)	147
O8-H81 $\cdots{ }^{\text {O }}{ }^{\text {i }}$	0.82	1.70	2.484 (4)	159
O9-H91 . ${ }^{\text {O }} 7$	0.82	1.86	2.589 (4)	147
C16-H16..O3 $3^{\text {ii }}$	0.93	2.82	3.396 (5)	121
$\mathrm{C} 27-\mathrm{H} 27 \cdots \mathrm{O} 3{ }^{\text {iii }}$	0.93	2.91	3.596 (6)	132

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $x-1, y, z$; (iii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.

Data collection

Rigaku R-AXIS RAPID
diffractometer

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.646, T_{\text {max }}=0.956$
32278 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.054$
$S=0.80$
7793 reflections
474 parameters

7793 independent reflections 4718 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-13 \rightarrow 13$
$k=-14 \rightarrow 17$
$l=-33 \rightarrow 33$

$$
\begin{aligned}
& \text { H-atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0275 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.61 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.46 \mathrm{e}^{-3}
\end{aligned}
$$

All H atoms were located from difference Fourier maps; they were then regenerated in their ideal positions and treated as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$, and with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{O})$.

Data collection: RAPID-AUTO (Rigaku, 2003); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004) and CRYSTALS (Watkin et al., 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999) and DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and

PLATON (Spek, 2003); software used to prepare material for publication: CrystalStructure.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1829). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. \& Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Bodner, R. L. \& Hendricker, D. G. (1973). Inorg. Chem. 12, 33-37.
Dewer, J. C., Kepert, D. L. \& White, A. H. (1975). J. Chem. Soc. Dalton Trans. pp. 490-492.
Enwall, E. L. \& Emerson, K. (1979). Acta Cryst. B35, 2562-2565.
Epstein, J. M., Dewar, J. C., Kepert, D. L. \& White, D. H. (1974). J. Chem. Soc. Dalton Trans. pp. 1949-1954.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Griffith, W. P., Koh, T. Y., White, A. J. P. \& Williams, D. J. (1995). Polyhedron, 14, 2019-2025.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Koizumi, T. \& Tanaka, K. (2004). Inorg. Chim. Acta, 357, 3666-3672.
Kristiansson, O. (2001). Inorg. Chem. 40, 5058-5059.
Movsumov, E. M., Antsyshkina, A. S., Ostrikova, V. N., Karaeva, K. T. \& Porai-Koshits, M. A. (1990). Koord. Khim. 16, 517-520. (In Russian.)
Munakata, M., Maekawa, M., Kitagawa, S., Adachi, M. \& Masuda, H. (1990). Inorg. Chim. Acta, 167, 181-188.
Rigaku (2003). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Tsuda, T., Ohba, S., Takahashi, M. \& Ito, M. (1989). Acta Cryst. C45, 887-890. Wang, Y. \& Okabe, N. (2005). Acta Cryst. E61, m382-m384.
Watkin, D. J., Prout, C. K., Carruthers, J. R. \& Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, University of Oxford, England.

